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The problem

Task: identify the sentiment expressed towards entities and their features

MP3 player review

For the money you get good [quality]1 and plenty of [memory]2, but
you also have to cope with a [UI]3 that is far from obvious and is
controlled by [buttons]4 with a very plastic feel to them.

Our solution: sequentially model the sentiment flow

MP3 player review

For the money you get good [quality]1 and plenty of [memory]2, but
you also have to cope with a [UI]3 that is far from obvious and is
controlled by [buttons]4 with a very plastic feel to them.
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Issues in entity-level sentiment analysis

High localization: sentiment about entities expressed in
sub-sentential level → bag-of-words IR approaches inadequate

Domain dependence: different ways of expressing sentiment across
domains → rule-based methods not robust

Evaluation: task not obvious, even for human annotators → hard
to establish gold standard for comparison
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Previous approaches

Document-level difficult to infer sentiment towards specific entities

Sentence-level sentence classification is not sufficient for identifying
sentiment of entities

Entity-level

[Opine] retrieve opinion sentences with
extraction rules
identify context-sensitive polar words
determine polarity using linguistic
information

[HuLiu] extract subjective sentences
identify polarity towards entities
contained in the extracted sentences
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Overview

Sequential modeling of the word-level sentiment flow: the sequence of
sentiment labels Y =< y1, y2, ..., yk > corresponding to a sequence of
words X =< x1, x2, ..., xk > in a text

Motivation

sentiment changes within a sentence

sentiment of a word/phrase depends on context and on previously
expressed sentiment

Sentiment flow

[For the money you get good quality and plenty of memory,] [but you
also have to cope with a UI that is far from obvious and is controlled by
buttons with a very plastic feel to them.]
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Overview

Sequential modeling of the word-level sentiment flow: the sequence of
sentiment labels Y =< y1, y2, ..., yk > corresponding to a sequence of
words X =< x1, x2, ..., xk > in a text

Motivation

sentiment changes within a sentence

sentiment of a word/phrase depends on context and on previously
expressed sentiment

Entity references

[For the money you get good [quality]1 and plenty of [memory]2,] [but
you also have to cope with a [UI]3 that is far from obvious and is
controlled by [buttons]4 with a very plastic feel to them.]
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Word-level sentiment modeling

Training data labeled with:
1 entity references
2 segments and their sentiment

The sentiment label of the segment is passed on to each of its
words, creating pairs <word, sentiment>

Each document is modeled as a sequence of observations (words)
and underlying states (sentiment labels)

Conditional Random Fields (CRF) are used to model this sequence
(as implemented in the Mallet toolkit)
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Linear-chain Conditional Random Fields

Discriminative model - scales well to large sets of features

Dependencies between labels (states), input sequences are learned
and weighted through the training data

Conditional probability is computed as

p(Y |X ) =
1

Z (X )
exp(

T∑
t=1

K∑
k=1

λk fk(yt , yt−1, xt)) (1)

Figure: Example of a linear-chain CRF
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Feature vector

Feature vector of word: word,POS + context of word

Every document of length k represented as a sequence of k feature
vectors

Extract

[...] But/CC at/IN the/DT same/JJ time/NN it/PRP takes/VBZ [...]

Table: Feature vector with context window size 5

wordi−2 tagi−2 wordi−1 tagi−1 wordi tagi wordi+1 tagi+1 wordi+2 tagi+2

the DT same JJ time NN it PRP takes VBZ

Training: feature vector of word + sentiment label of word
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Decoding entity-level sentiment

Each document is assigned a word-level sequence of sentiment labels

Sentiment flow of document

[...] Creative is an excellent mp3 player, but its supplied earphones are of
inferior quality [...]

The entity-level sentiment is extracted by the labels assigned
to entity references

Extract local sentiment for entity references

[...] [Creative]1 is an excellent mp3 player, but its supplied [earphones]2
are of inferior quality [...]
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Dataset

Dataset: Customer Review Data [HuLiu]

314 reviews for 5 products
2108 annotated pairs <entity reference, sentiment> (1363 positive,
745 negative, 0 neutral)

Further annotated with segments and their sentiment

72461 annotated words - ∼87% agreement with gold standard on
entity level

Force 100% agreement on entity-level annotation (only pos, neg) for
comparison
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Entity-level results

After randomly permutating the dataset, we performed a 10-fold
cross-validation:

Table: Entity-level sentiment classification

ELS accuracy H&L opinion recall H&L polarity accuracy H&L expected accuracy *

68.6% 69.3% 84.2% 58.4% *

Table: Entity-level opinion recall (binary classification)

ELS method H&L method

87.8% 69.3%

* combination of opinion extraction recall with polarity classification
accuracy
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Domain independence experiment

Aim: test performance on new, unseen types of reviews

Training set: reviews for 3 of the 4 product types

Test set: the 4th product type

Table: Domain independence experiment results

Average for 4 product types Initial experiment

Entity-level accuracy 61.7% 68.6%
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Error analysis using pattern discovery

Frequent patterns observed in the predicted sentiment flow

Correlation between some word-level prediction sequences and
certain types of entity-level error

Odds ratio: r = P(yt→ŷf |Y )
P(yt→ŷf )

Significant patterns:

positive followed by neutral: decreased probability of error
negative→neutral (odds ratio: 0.671)
neu-neg-neu: decreased probability of error pos→neu and pos→neg
(odds ratio: 0.66, 0.69 resp.)
Generally, absence of a label from an alternation pattern in the
prediction adds confidence to the absence of a label from the original
data - could be used for providing confidence scores
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Conclusion

A method for entity-level sentiment classification using word-level
modeling of the sentiment flow

Advantages:

Better performance than previous approaches on entity-level
sentiment classification
Relatively stable when tested on unseen domains
The sentiment flow can be used for error analysis and for detecting
higher-level patterns

Disadvantages:

Rich manual annotation needed

Currently working towards more generic and linguistically-aware
approaches needing fewer annotated data
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