EGOVERNMENT MONITOR

A solution to the exact match on rare item searches

Morten Goodwin Tingtun AS, Aalborg University

International Conference on Web Intelligence, Mining and Semantics (WIMS) Sogndalen, Norway, 2011-05-27

This work is licensed under the Creative Commons Attribution-ShareAlike License.

Project no.: Verdikt 183392/S10

A solution to the exact match on rare item searches

- A approach/tool for locating eGovernment services
- Where does it fit in. What can it be used for?
 - Egovernment Surveys, Automatic measurements of web sites
- Problem definition
 - What is the exact match on rare item searches.
- Algorithms
- Results
 - Syntethic environments
 - Real web sites
- Conclusion and further work. • GOVMON

eGovernment

- EGovernment means the use of IT to improve governments. E.g.
 - Make information available online to reach more citizens.
 - Local government budget, municipal calendar, and so on.
 - Make governmental services available online using web technologies.
 - Tracking of building permissions, mail records, interactive meetings, and so on.

Egovernment Measurements

- Benchmark eGovernments is common.
 - In Norway: DIFI/Norge.no, Consumers Council
 - International: UNPAN, Capgemini, Brown University, ...
- Most common to check the supply side of governments:

egovmon

- Web site, e-mail, mobile functionality, and so on.
- Checking the supply side is easiest because it is available.
- The supply side is what citizens use and is therefore the most important for the citizens.

Characteristics of eGovernment testers

- Fall into at least one of the three categories:
 - Big organisations: UN, Capgemini, and so on.
 - Focus on a specific eGovernment topic.
 - Focus on a small geographical or political area.
- The others have too few resources.

Manual assessment (1)

- Much of the work is assessed manually.
 - Existence tests:
 - An expert checks whether a service is available online.
 - Since interpretations may differ from expert to expert, and day to day, the same tests need to carried out many times.
 - Findability tests:
 - Can the service be found by actual users.
 - Representative users try to locate

EGOVMON information within a time frame.

Manual assessment (2)

- Disadvantages:
 - Time consuming, costly, biased, infrequent, not on demand,
- Advantages:
 - Is better at judging than machines, high accuracy, more manual tests available,
- It therefore makes sence to automize as much of the assessment as possible.

<u>e Govmon</u>

Motivations

- Motivations for eGovernment:
 - Introducing IT to improve governments.
- Motivations for this approach:
 - Introducing automation to improve eGovernment measurements.

Automatic testing (1)

Automatic testing (2)

Characteristics of services / information online (1)

- In most cases it is only one per web site.
 - E.g. The most recent budged.
- Restricted by robots.txt
 - Much information not available at main search engines.

Characteristics of services / information online (2)

- Government web sites are complex:
 - Many services available from different vendors, often available at the vendors web site.
 - Domain name not sufficient to describe web site.
- Government web sites link almost exclucive to their own information/ services:
 - No municipality link to the contact information of others.

Problem definition

- Find the one web page within a web page within the web site that matches the criteria, if any.
- Formally:
 - Let pt be an unobservable target page.
 - Select a page in web sites S so that it is expected to be the pt while minimizing the number of downloaded pages.
- Most useful when web sites are large.
- Exact Match on Rare Item Search (EMRIS).
- Unlike similar problems: You can easily decide the correct target page prior to running the algorithm
 - No (subconsciously) favoring of their own algorithm.

Related algorithms (1)

- EMRIS
 - Similarity search: Follow links to pages which are most similar to the training data using cosine similarity.
 - Requires download of pages before choosing if it should be followed.
 - Degree based search: Follow links to pages which has many links.
 - SIMDEG: Merging of Similarity and Degree based search

Related algorithms (2)

- Focused crawlers (e.g. Fish search, shark search):
 - Not focused on finding one page.
- Web page classifiers:
 - Not minimizing the number of pages to be evaluated.
- Search algorithm (e.g. A*):
 - The target page is observable, which is a a different problem.
- Lost sheep: Not a replacement

Modelling the web site

- Web site: A labled directed graph G(V,E,L)
 - -V = pages
 - -E = links
 - L = labels / link texts

Web site example (1)

egovmon

- ps: Starting page.
- pt: Target page with contact information
 ls,t: Contact us
- p1: General information Is,1: About us
- p₂: Image gallery I_{s,2}: Image gallery

Lost Sheep

How is lost sheep an improvement?

- Uses link texts as a pre-classifier.
 - Downloads fewer pages and makes the classification problem easier.
- Can use any classifier.
 - Use the classifier that fits the problem to be solved.
 - Not intended to replace existing classifiers.
- Works with web sites which are not formally scoped.
- Is able to locate the target page than comparable algorithms with a higher accuracy and fewer downloaded pages.

<u>e</u> Govmon

Practical implementation notes

- Stemming is applied.
- Stop words removed.
- Each sheep is:
 - (1) A learning automata classifier, including using tf-idf.
 - (2) Cosine similarity approach.
- The sheep stop when:
 - Confidence: > 0.75 (tried many)
 - Maxdepth: 5

<u>e</u>GOVMON

Synthethic environment

- Target page, pt, is chosen at complete random
- Training data: 75 % of words randomly chosen words within pt 25% outside

Synthethic Environment Results - Accuracy

Synthethic Environment Results - Number of downloads

Real environment tasks (1)

- 13 realistic tasks in 427 Norwegian local government web sites.
 - Finding at most one page with information or services on a web site.
 - E.g. The latest anual budget.
- Locating transparency information and services in local government web sites.
 - Based on commonly assessed information and state of the art.
 - Open government data.

eGOVMON

 Two tasks completely assessed manually. 11 tasks assessed 10%.

- The target page chosen **before** the algorithm.

Real environment tasks (2)

- 1) Contact information
- 2) Recent information section

3) Budget

- 4) Local government calendar
- 5) Local government plan
- 6) Zoning information and plans
- 7) Mail record
- 8) Search functionality (on a single page)

<u>e Govmon</u>

- 9) Online local government board meetings
- 10)Online local government executive council
- 11)Chat with administrative or political officials
- 12)Video of city or municipality board meetings
- 13)Online city or municipal plan meeting

Main references: Sundance, eGep, Leapfrog, Norge.no, Local Government Stakeholders and decision makers.

Results

•	Task		Existance	Findable
•	Contact information		416	345
•	Recent information section		350	168
•	Budget		199	60
•	Local government calendar		238	105
•	Local government plan		216	65
•	Zoning information and plans		155	33
•	Mail record		379	311
•	Search functionality (on a single page)		364	179
•	Online local government board meetings		332	143
•	Online local government executive council		292	102
•	Chat with administrative or political officials		20	9
•	Video of city or municipality board meetings		27	14
•	Online city or municipal plan meeting	Sample size: 4	³⁹ 27 web sites.	13
	GOVMON	Training data:	Between 10-20	pages.

6

Real Environment - Accuracy

Real Environment - Number of downloaded pages

Real Environment - Duration

Usefullness of the results

- Reports
 - Existsance (if a target page exists) and
 - Findability (an indication if a target page can be found by real users) based on number of clicks.
- Depending on the resources available, the lost sheep could either be used:
 - Directly.
 - As input to experts for manual verification.
- Prioritising of which tests should be carried out as user testing.
 COVMON

Further work

- Language independence.
 - Large eGovernment surveys are for many countries and languages.
 - Either language independance or classify multiple languages.
- Hands on experience on eGovernment surveys.

Thanks

Supplementary slides

Supplementary slides

Metrics (1) (Why TP is enough)

- Web site
 - Not target pagesTarget page

Web Site

Metrics (2)

• Option 1: Has found the correct page.

True Positives: 1 True Negatives: N-1 False Positives: 0 False Negatives: 0

Metrics (3)

• Option 2: Has found the correct page.

Metrics (4)

- Conclusion:
 - True Positive, True Negative, False
 Positive, False Positives can all be calculated if the following is known
 - N.
 - A TP is known.
 - Hence: If(TP==1):
 - TP=1, TN=N-1, FP=0, FN=0
 - Else:
 - TP=0, TN=N-2, FP=1, FN=1

Lost Sheep Algorithm (1)

Algorithm 4.1 Lost Sheep

- 1: $depth \leftarrow 0$
- 2: $q \leftarrow$ training data
- 3: $x'.confidence \leftarrow 0$
- 4: $p_i \leftarrow p_s$
- 5: $Visited \leftarrow empty set.$
- 6: while x'.confidence < threshold and depth < maxdepth do
- 7: Add p_i to *V* isited.
- 8: Let $\mathbf{E} = \{e_{i,0}, \dots, e_{i,n}\}$ be the *n* edges from p_i .
- 9: Let $\mathbf{L} = \{l_{i,0}, \ldots, l_{i,n}\}$ be the labels connected to each edge in \mathbf{E} .
- 10: The herder releases n sheep $X = \{x_0, \ldots, x_n\}$ where each sheep $x_j \in X$ is connected to edge $e_{i,j}$ if $p_i \notin Visited$.
- 11: for all $x_j \in X$ do
- 12: Let $l_{i,j}$ be the label connected to edge $e_{i,j}$.
- 13: Let p_j be the not yet visited page available from $e_{i,j}$.
- 14: $x_j.confidence \leftarrow 0$
- 15: $x_i.page \leftarrow p_i$

<u>e</u>GOVMON

Lost Sheep Algorithm (2)

16: $tp'(x, o, q) \leftarrow \text{a classifier, e.g algorithm 4.2, 4.3 or 4.4}$

17:
$$x_j \leftarrow tp'(sheep \ x = x_j, object \ o = l_{i,j}, training \ data \ q = q)$$

- 18: if x_j .shouldcontinue then
- 19: Download p_j

20:
$$x_j \leftarrow tp'(sheep \ x = x_j, object \ o = p_j, training \ data \ q = q)$$

- 21: Add p_j to *V* isited.
- 22: end if
- 23: end for
- 24: $depth \leftarrow depth + 1$
- 25: Find $x'' \in X$ where $x''.confidence \ge x_j.confidence$ for all $x_j \in X$
- 26: if x''.confidence > x'.normconfidence then
- 27: $x' \leftarrow x''$
- 28: $p_i \leftarrow x'.page$
- 29: end if
- 30: end while

<u>e</u>GOVMON