Prediction of Class and Property Assertions on OWL Ontologies through Evidence Combination

Giuseppe **Rizzo** Claudia **d'Amato** Nicola **Fanizzi** Floriana **Esposito**

LACAM - Computer Science Dept. University of Bari, Italy

WIMS'11

Motivation

Semantic Web knowledge bases characterized by **uncertainty**

- incompleteness / inconsistency
- Purely dedutcive methods may fall short
 Exploiting alternative (approximate / inductive) approaches to perform data mining tasks

Proposed Approach

In particular: task of **prediction** of assertions

- class-membership
- object and data-type props filler
- Proposal
 - Nearest Neighbors approach
- Dempster-Shafer Evidence Theory (DST)
 - BBA, Belief, Plausibility, Confirmation
- Evidence combination
 - DS, Yager, other combination rules

DL Knowledge Bases

Knowledge Base $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$

- TBox *T*: set of axioms defining *concepts* and *properties*
- ABox *A* : set of assertions concerning the world-state
 - Facts that involve the individuals (resources) using concepts and properties
- Reasoning services
 - open-world semantics

Dissimilarity Measures/1

• Given a **context** of concepts

$$C = \{ C_1, C_2, ..., C_m \}$$

• Projection function:

$$\forall a \in \mathsf{Ind}(\mathcal{A}) \qquad \pi_i(a) = \begin{cases} 1 & \mathcal{K} \models C_i(a) \\ 0 & \mathcal{K} \models \neg C_i(a) \\ \pi_i & \text{otherwise} \end{cases}$$

• Discernibility function for C_i : $\delta_i(a,b) = |\pi_i(a) - \pi_i(b)|$

Dissimilarity Measures/2

Given a context C , p ∈ R and w ∈ Rⁿ
 family of **dissimilarity** measures:

$$d_p^{\mathsf{C}}(a,b) = \left[\sum_{C_i \in \mathsf{C}} w_i \delta_i(a,b)^p\right]^{\frac{1}{p}}$$

Evidence Theory

Frame of discernment Ω

- set of hypotheses for a certain domain
- **Basic belief assignment** (BBA) $m : 2^{\Omega} \rightarrow [0,1]$
- $\sum_{A} m(A) = 1$
- *m*(*A*) belief committed <u>exactly</u> to *A*

no additional claims about its subsets

• m(A) > 0 => A is a **focal** element

Belief and Plausibility

Belief function:

$$\forall A \in 2^{\Omega} \qquad Bel(A) = \sum_{\emptyset \neq B \subseteq A} m(B) \in [0, 1]$$

• Plausibility function:

$$\forall A \in 2^{\Omega} \qquad Pl(A) = \sum_{B \cap A \neq \emptyset} m(B) \in [0, 1]$$

Rules of Combination

Given BBAs m_1 and m_2

DS rule

$$m_{12}(A) = (m_1 \oplus m_2)(A) = \frac{\sum_{B \cap C = A} m_1(B) m_2(C)}{1 - \sum_{B \cap C = \emptyset} m_1(B) m_2(C)}$$

normalized version:

• 1 - *c* hides the **contrast** between the BBAs

Rules of Combination/2

Yager's rule

$$m_{12}(A) = \begin{cases} \sum_{B \cap C = A} m_1(B) m_2(C) & A \neq \Omega \land A \neq \emptyset \\ m_1(\Omega) m_2(\Omega) + c & A = \Omega \\ 0 & A = \emptyset \end{cases}$$

- more *epistemologically* sound: contrast attributed to the case A = Ω (total ignorance)
- Other rules used in the experiments: Dubois-Pradé, Mixing

- Given
 - A *set of values V* (to be predicted)
 - a *training set* of labeled individuals
 - $\mathsf{TrSet} = \{(x_1, v_1), ..., (x_M, v_M)\} \subseteq \mathsf{Ind}(\mathcal{A}) \times V$
 - a query individual x_q
- Select the set of k nearest neighbors N_k(x_q) according to a (dis)similarity measure

 Each (x_i, v_i) in N_k(x_q) induces a BBA m_i regarding the value to be predicted for x_q

$$m_i(A) = \begin{cases} \lambda \sigma(d(x_q, x_i)) & A = \{v_i\} \\ 1 - \lambda \sigma(d(x_q, x_i)) & A = V \\ 0 & \text{otherwise} \end{cases}$$

Combine the induced BBAs:

$$\bar{m} = \bigoplus_{j=1}^{k} m_j = m_1 \oplus \dots \oplus m_k$$

Predict based on belief / plausibility values:

$$v_q = \underset{(x_i, v_i) \in N_k(x_q)}{\operatorname{argmax}} \operatorname{Bel}(\{v_i\})$$

$$v_q = \underset{(x_i, v_i) \in N_k(x_q)}{\operatorname{argmax}} \overline{Pl}(\{v_i\})$$

Alternatively, use a *confirmation* function

$$C(A) = Bel(A) + Pl(A) - 1$$

then:

$$v_q = \underset{(x_i, v_i) \in N_k(x_q)}{\operatorname{argmax}} \overline{C}(\{v_i\})$$

Prediction Tasks

Class-membership w.r.t. Q :

 $V_Q = \{-1,+1\}$ or $V_Q = \{-1,0,+1\}$

• Object property *R* filler:

 $V_R = \mathsf{Ind}(\mathcal{A})$

• Datatype property *P* value:

 $V_P = \{ v \mid \exists P(a, v) \in \mathcal{A} \}$

Ontologies from standard repositories

Ontology	DL	#concepts	#object	#datatype	#individuals	
	language	#concepts	properties	properties		
FSM	$\mathcal{SOF}(\mathcal{D})$	20	10	7	37	
BCO	$\mathcal{ALCROF}(\mathcal{D})$	196	22	3	112	
IMDB	$\mathcal{ALIN}(\mathcal{D})$	7	5	13	302	
ΒιοΡάχ	$\mathcal{ALCIF}(\mathcal{D})$	74	70	40	323	
HDis	$\mathcal{ALCIF}(\mathcal{D})$	1498	10	15	639	

- 10 fold cross validation
- $k = \log|\text{TSet}|$
- 4 combination rules
- Random classes created with *ALC* ops
- 5 built-in *functional* properties

Indices

Using a reasoner to decide the ground truth:

- Match rate
- Omission error rate
- Commission error rate
- Induction rate

(M%) (O%) (C%) (I%)

Outcomes Class Membership

Ontology		Dempster	Dubois-Prade	Mixing	Yager
FSM	M%	$86.60~\pm~04.42$	$84.75~\pm~04.49$	$85.80~\pm~03.90$	$89.00~\pm~04.65$
	C%	04.69 ± 03.05	06.65 ± 03.06	05.49 ± 02.33	02.29 ± 02.76
	0%	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00
	I%	08.71 ± 00.29	08.71 ± 00.29	08.71 ± 00.29	08.71 ± 00.29
ΒιοΡάχ	M%	$94.93~\pm~00.32$	$94.76~\pm~00.32$	$94.93~\pm~00.32$	$94.93~\pm~00.32$
	C%	00.15 ± 00.00	00.32 ± 00.00	$00.15~\pm~00.00$	00.15 ± 00.00
	0%	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00
	I%	04.91 ± 00.29	$04.91~\pm~00.29$	$04.91~\pm~00.29$	$04.91~\pm~00.29$
BCO	M%	$85.21\ \pm\ 04.04$	84.54 ± 04.83	$85.21~\pm~04.04$	85.45 ± 04.18
	C%	00.81 ± 00.56	$01.47~\pm~01.54$	00.81 ± 00.56	00.57 ± 00.70
	0%	00.05 ± 00.14	00.14 ± 00.23	00.05 ± 00.14	00.05 ± 00.14
	I%	13.93 ± 03.72	$13.95~\pm~03.64$	13.93 ± 03.72	$13.93~\pm~03.72$

Outcomes Object Property Values

Ontology		Dempster	Dubois-Prade	Mixing	Yager
FSM	M%	$99.64~\pm~00.33$	$99.64~\pm~00.33$	$99.98~\pm~00.07$	$99.64~\pm~00.33$
	C%	00.02 ± 00.07	00.36 ± 00.33	00.02 ± 00.07	00.36 ± 00.33
	0%	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00
	I%	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00
ΒιοΡάχ	M%	100.00 ± 00.00	100.00 ± 00.00	100.00 ± 00.00	100.00 ± 00.00
	C%	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00
	0%	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00
	Ι%	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00
BCO	M%	100.00 ± 00.00	100.00 ± 00.00	100.00 ± 00.00	100.00 ± 00.00
	C%	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00
	0%	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00
	Ι%	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00

Outcomes Data Property Values

Ontology		Dempster	Dubois-Prade	Mixing	Yager
BCO	M%	64.15 ± 13.53	$\texttt{33.79}~\pm~\texttt{11.64}$	$63.52~\pm~15.08$	$71.14~\pm~10.00$
	C%	35.85 ± 13.53	13.61 ± 10.52	36.48 ± 15.08	$28.86~\pm~10.00$
	0%	00.00 ± 00.00	52.60 ± 15.95	00.00 ± 00.00	$00.00~\pm~00.00$
	I%	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00	$00.00~\pm~00.00$
IMDB	M%	65.60 ± 06.38	39.73 ± 14.19	66.25 ± 05.94	$\texttt{61.34} \pm \texttt{08.28}$
	C%	30.74 ± 06.57	13.62 ± 10.52	30.09 ± 06.13	35.00 ± 09.78
	0%	03.66 ± 03.74	43.01 ± 19.99	03.66 ± 03.74	$03.66~\pm~03.74$
	I%	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00	$00.00~\pm~00.00$
HDIS	M%	61.00 ± 19.15	61.00 ± 19.15	61.00 ± 19.15	61.00 ± 19.15
	C%	35.62 ± 17.32	35.62 ± 17.32	35.62 ± 17.32	$35.62~\pm~17.32$
	0%	03.38 ± 04.94	03.38 ± 04.94	03.38 ± 04.94	$03.38~\pm~04.94$
	I%	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00	$00.00~\pm~00.00$

Conclusions

Contribution

- Evidential NN procedure based on
 - DST
 - Dissim. measure
- Prediction of
 - class-membership
 - (functional) role fillers

Outlook

- Tackle prediction of non-functional properties vals
- Regression/Ranking
 - based on nonexplicit criteria
- Integration with Rough DL

Thank you

Questions ?

Offline Find us at: http://lacam.di.uniba.it:8000/