Prediction of
 Class and Property Assertions on OWL Ontologies through Evidence Combination

Giuseppe Rizzo Claudia d'Amato

Nicola Fanizzi
Floriana Esposito

LACAM - Computer Science Dept. University of Bari, Italy

Motivation

Semantic Web knowledge bases characterized by uncertainty

- incompleteness / inconsistency
- Purely dedutcive methods may fall short

Exploiting alternative (approximate / inductive) approaches to perform data mining tasks

Proposed Approach

In particular: task of prediction of assertions

- class-membership
- object and data-type props filler

Proposal

- Nearest Neighbors approach
- Dempster-Shafer Evidence Theory (DST)
- BBA, Belief, Plausibility, Confirmation
- Evidence combination
- DS, Yager, other combination rules

DL Knowledge Bases

Knowledge Base $\mathcal{K}=\langle\mathcal{T}, \mathcal{A}\rangle$

- TBox \mathcal{T} : set of axioms defining concepts and properties
- ABox \mathfrak{A} : set of assertions concerning the world-state
" Facts that involve the individuals (resources) using concepts and properties
- Reasoning services
- open-world semantics

Dissimilarity Measures/1

- Given a context of concepts

$$
\mathrm{C}=\left\{C_{1}, C_{2}, \ldots, C_{\mathrm{m}}\right\}
$$

- Projection function:
$\forall a \in \operatorname{Ind}(\mathcal{A}) \quad \pi_{i}(a)= \begin{cases}1 & \mathcal{K} \models C_{i}(a) \\ 0 & \mathcal{K} \models \neg C_{i}(a) \\ \pi_{i} & \text { otherwise }\end{cases}$
- Discernibility function for C_{i} :

$$
\delta_{i}(a, b)=\left|\pi_{i}(a)-\pi_{i}(b)\right|
$$

Dissimilarity Measures/2

- Given a context $\mathrm{C}, \mathrm{p} \in \mathbf{R}$ and $w \in \mathbf{R}^{\mathrm{n}}$ family of dissimilarity measures:

$$
d_{p}^{C}(a, b)=\left[\sum_{C_{i} \in \mathrm{C}} w_{i} \delta_{i}(a, b)^{p}\right]^{\frac{1}{p}}
$$

Evidence Theory

Frame of discernment Ω

- set of hypotheses for a certain domain

Basic belief assignment (BBA) $m: 2^{\Omega} \rightarrow[0,1]$

- $\sum_{\mathrm{A}} m(A)=1$
- $m(A)$ belief committed exactly to A
- no additional claims about its subsets
- $m(A)>0=>A$ is a focal element

Belief and Plausibility

- Belief function:

$$
\forall A \in 2^{\Omega} \quad \operatorname{Bel}(A)=\sum_{\emptyset \neq B \subseteq A} m(B) \in[0,1]
$$

- Plausibility function:

$$
\forall A \in 2^{\Omega} \quad P l(A)=\sum_{B \cap A \neq \emptyset} m(B) \in[0,1]
$$

Rules of Combination

Given BBAs m_{1} and m_{2}

- DS rule
$m_{12}(A)=\left(m_{1} \oplus m_{2}\right)(A)=\frac{\sum_{B \cap C=A} m_{1}(B) m_{2}(C)}{1-\sum_{B \cap C=\emptyset} m_{1}(B) m_{2}(C)}$
normalized version:
- 1-c hides the contrast between the BBAs

Rules of Combination/2

- Yager's rule
$m_{12}(A)=\left\{\begin{array}{cl}\sum_{B \cap C=A} m_{1}(B) m_{2}(C) & A \neq \Omega \wedge A \neq \emptyset \\ m_{1}(\Omega) m_{2}(\Omega)+c & A=\Omega \\ 0 & A=\emptyset\end{array}\right.$
- more epistemologically sound: contrast attributed to the case $\mathrm{A}=\Omega$ (total ignorance)
- Other rules used in the experiments: Dubois-Pradé, Mixing

Evidential Nearest-Neighbors

- Given
- A set of values V (to be predicted)
- a training set of labeled individuals

$$
\operatorname{TrSet}=\left\{\left(x_{1}, v_{1}\right), \ldots,\left(x_{\mathrm{M}}, v_{\mathrm{M}}\right)\right\} \subseteq \operatorname{Ind}(\mathcal{A}) \times V
$$

- a query individual x_{q}
- Select the set of k nearest neighbors $N_{\mathrm{k}}\left(x_{\mathrm{q}}\right)$ according to a (dis)similarity measure

Evidential Nearest-Neighbors

- Each $\left(x_{i}, v_{\mathrm{i}}\right)$ in $N_{\mathrm{k}}\left(x_{\mathrm{q}}\right)$ induces a BBA m_{i} regarding the value to be predicted for x_{q}
$m_{i}(A)= \begin{cases}\lambda \sigma\left(d\left(x_{q}, x_{i}\right)\right) & A=\left\{v_{i}\right\} \\ 1-\lambda \sigma\left(d\left(x_{q}, x_{i}\right)\right) & A=V \\ 0 & \text { otherwise }\end{cases}$
- Combine the induced BBAs:

$$
\bar{m}=\bigoplus_{j=1}^{k} m_{j}=m_{1} \oplus \cdots \oplus m_{k}
$$

Evidential Nearest-Neighbors

- Predict based on belief / plausibility values:

$$
v_{q}=\underset{\left(x_{i}, v_{i}\right) \in N_{k}\left(x_{q}\right)}{\operatorname{argmax}} \overline{\operatorname{Bel}}\left(\left\{v_{i}\right\}\right)
$$

$$
v_{q}=\underset{\left(x_{i}, v_{i}\right) \in N_{k}\left(x_{q}\right)}{\operatorname{argmax}} \overline{P l}\left(\left\{v_{i}\right\}\right)
$$

Evidential Nearest-Neighbors

- Alternatively, use a confirmation function

$$
C(A)=\operatorname{Bel}(A)+\operatorname{Pl}(A)-1
$$

then:

$$
v_{q}=\underset{\left(x_{i}, v_{i}\right) \in N_{k}\left(x_{q}\right)}{\operatorname{argmax}} \bar{C}\left(\left\{v_{i}\right\}\right)
$$

Prediction Tasks

- Class-membership w.r.t. Q :

$$
V_{Q}=\{-1,+1\} \quad \text { or } \quad V_{Q}=\{-1,0,+1\}
$$

- Object property R filler:

$$
V_{R}=\operatorname{Ind}(\mathcal{A})
$$

- Datatype property P value:

$$
V_{P}=\{v \mid \exists P(a, v) \in \mathcal{A}\}
$$

Experiments

- Ontologies from standard repositories

Ontology	$\begin{gathered} \mathrm{DL} \\ \text { language } \end{gathered}$	\#concepts	\#object properties	\#datatype properties	\#individuals
FSM	$\mathcal{S O F}(\mathcal{D})$	20	10	7	37
BCO	$\mathcal{A L C R O F}(\mathcal{D})$	196	22	3	112
IMDB	$\mathcal{A L I N}(\mathcal{D})$	7	5	13	302
BioPax	$\mathcal{A L C I F}(\mathcal{D})$	74	70	40	323
HDis	$\mathcal{A L C I F}(\mathcal{D})$	1498	10	15	639

- 10 fold cross validation
- $k=\log \mid$ TSet \mid
- 4 combination rules
- Random classes created with $\mathfrak{A L C}$ ops
- 5 built-in functional properties

Indices

Using a reasoner to decide the ground truth:

- Match rate
- Omission error rate
- Commission error rate
- Induction rate
(M\%)
(O\%)
(C\%)
(I\%)

Outcomes

Class Membership

Ontology		Dempster	Dubois-Prade	Mixing	Yager
FSM	M\%	86.60 ± 04.42	84.75 ± 04.49	85.80 ± 03.90	89.00 ± 04.65
	C\%	04.69 ± 03.05	06.65 ± 03.06	05.49 ± 02.33	02.29 ± 02.76
	O\%	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00
	I\%	08.71 ± 00.29	08.71 ± 00.29	08.71 ± 00.29	08.71 ± 00.29
BioPax	M\%	94.93 ± 00.32	94.76 ± 00.32	94.93 ± 00.32	94.93 ± 00.32
	C\%	00.15 ± 00.00	00.32 ± 00.00	00.15 ± 00.00	00.15 ± 00.00
	O\%	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00
	I\%	04.91 ± 00.29	04.91 ± 00.29	04.91 ± 00.29	04.91 ± 00.29
BCO	M\%	85.21 ± 04.04	84.54 ± 04.83	85.21 ± 04.04	85.45 ± 04.18
	C\%	00.81 ± 00.56	01.47 ± 01.54	00.81 ± 00.56	00.57 ± 00.70
	O\%	00.05 ± 00.14	00.14 ± 00.23	00.05 ± 00.14	00.05 ± 00.14
	I\%	13.93 ± 03.72	13.95 ± 03.64	13.93 ± 03.72	13.93 ± 03.72

Outcomes Object Property Values

Ontology		Dempster	Dubois-Prade	Mixing	Yager
FSM	M\%	99.64 ± 00.33	99.64 ± 00.33	99.98 ± 00.07	99.64 ± 00.33
	$\mathrm{C} \%$	00.02 ± 00.07	00.36 ± 00.33	00.02 ± 00.07	00.36 ± 00.33
	$\mathrm{O} \%$	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00
	$\mathrm{I} \%$	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00
	$\mathrm{M} \%$	100.00 ± 00.00	100.00 ± 00.00	100.00 ± 00.00	100.00 ± 00.00
	$\mathrm{C} \%$	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00
	$\mathrm{O} \%$	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00
	$\mathrm{I} \%$	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00
BCO	$\mathrm{M} \%$	100.00 ± 00.00	100.00 ± 00.00	100.00 ± 00.00	100.00 ± 00.00
	$\mathrm{C} \%$	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00
	$\mathrm{O} \%$	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00
	$\mathrm{I} \%$	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00

Outcomes Data Property Values

Ontology		Dempster	Dubois-Prade	Mixing	Yager
BCO	$\mathrm{M} \%$	64.15 ± 13.53	33.79 ± 11.64	63.52 ± 15.08	71.14 ± 10.00
	$\mathrm{C} \%$	35.85 ± 13.53	13.61 ± 10.52	36.48 ± 15.08	28.86 ± 10.00
	$\mathrm{O} \%$	00.00 ± 00.00	52.60 ± 15.95	00.00 ± 00.00	00.00 ± 00.00
	$\mathrm{I} \%$	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00
	$\mathrm{M} \%$	65.60 ± 06.38	39.73 ± 14.19	66.25 ± 05.94	61.34 ± 08.28
	$\mathrm{C} \%$	30.74 ± 06.57	13.62 ± 10.52	30.09 ± 06.13	35.00 ± 09.78
	$\mathrm{O} \%$	03.66 ± 03.74	43.01 ± 19.99	03.66 ± 03.74	03.66 ± 03.74
	$\mathrm{I} \%$	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00
	$\mathrm{M} \%$	61.00 ± 19.15	61.00 ± 19.15	61.00 ± 19.15	61.00 ± 19.15
	$\mathrm{C} \%$	35.62 ± 17.32	35.62 ± 17.32	35.62 ± 17.32	35.62 ± 17.32
	$\mathrm{O} \%$	03.38 ± 04.94	03.38 ± 04.94	03.38 ± 04.94	03.38 ± 04.94
	$\mathrm{I} \%$	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00	00.00 ± 00.00

Conclusions

Contribution

- Evidential NN procedure based on
- DST
- Dissim. measure
- Prediction of
- class-membership
- (functional) role fillers

Outlook

- Tackle prediction of non-functional properties vals
- Regression/Ranking
- based on nonexplicit criteria
- Integration with Rough DL

The End

Thank you

Questions?

Offline
Find us at: http://lacam.di.uniba.it:8000/

